Water-templated transmembrane nanopores from shape-persistent oligocholate macrocycles.

نویسندگان

  • Hongkwan Cho
  • Lakmini Widanapathirana
  • Yan Zhao
چکیده

Hydrophobic interactions normally are not considered a major driving force for self-assembling in a hydrophobic environment. When macrocyclic oligocholates were placed within lipid membranes, however, the macrocycles pulled water molecules from the aqueous phase into their hydrophilic internal cavities. These water molecules had strong tendencies to aggregate in a hydrophobic environment and templated the macrocycles to self-assemble into transmembrane nanopores. This counterintuitive hydrophobic effect resulted in some highly unusual transport behavior. Cholesterol normally increases the hydrophobicity of lipid membranes and makes them less permeable to hydrophilic molecules. The permeability of glucose across the oligocholate-containing membranes, however, increased significantly upon the inclusion of cholesterol. Large hydrophilic molecules tend to have difficulty traversing a hydrophobic barrier. The cyclic cholate tetramer, however, was more effective at permeating maltotriose than glucose.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tuning nanopore formation of oligocholate macrocycles by carboxylic acid dimerization in lipid membranes.

Oligocholate macrocycles self-assemble into transmembrane nanopores by the associative interactions of water molecules inside the amphiphilic macrocycles. Macrocycles functionalized with a terephthalic acid "side chain" displayed significantly higher transport activity for glucose across lipid bilayers than the corresponding methyl ester derivative. Changing the 1,4-substitution of the dicarbox...

متن کامل

Aromatically functionalized cyclic tricholate macrocycles: aggregation, transmembrane pore formation, flexibility, and cooperativity.

The aggregation of macrocyclic oligocholates with introverted hydrophilic groups and aromatic side chains was studied by fluorescence spectroscopy and liposome leakage assays. Comparison between the solution and the membrane phase afforded insight into the solvophobically driven aggregation. The macrocycles stacked over one another in lipid membranes to form transmembrane nanopores, driven by a...

متن کامل

Hydrogen bond-assisted macrocyclic oligocholate transporters in lipid membranes.

Three macrocyclic oligocholates containing a carboxyl group, a guanidinium ion, and a Cbz-protected amine, respectively, were studied as membrane transporters for hydrophilic molecules. To permeate glucose across lipid bilayers, the macrocycles stacked over one another to form a transmembrane nanopore, driven by a strong tendency of the water molecules in the internal cavities of the amphiphili...

متن کامل

Self-assembling subnanometer pores with unusual mass-transport properties.

A long-standing aim in molecular self-assembly is the development of synthetic nanopores capable of mimicking the mass-transport characteristics of biological channels and pores. Here we report a strategy for enforcing the nanotubular assembly of rigid macrocycles in both the solid state and solution based on the interplay of multiple hydrogen-bonding and aromatic π-π stacking interactions. The...

متن کامل

Hydrazide macrocycles as effective transmembrane channels for ammonium.

Three shape-persistent aromatic hydrazide macrocycles that bear phenylalanine tripeptide chains have been synthesized. These macrocycles can insert into lipid bilayers to form single-molecular ion channels which exhibit a high NH4(+)/K(+) selectivity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 133 1  شماره 

صفحات  -

تاریخ انتشار 2011